Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms

نویسندگان

  • C. Paty
  • W. Paterson
  • R. Winglee
چکیده

[1] We investigate the ion population and energy distribution within Ganymede’s magnetosphere by examining Ganymede’s ionospheric outflow as a source of heavy (O) and light (H) ions and the Jovian magnetospheric plasma as an external source of heavy ions. We develop a method for examining the energy distributions of each ion species in a three-dimensional multifluid simulation in a way directly comparable to the observations of the Plasma Experiment on the Galileo spacecraft. This is used to provide new insight to the existing controversy over the composition of Ganymede’s observed ionospheric outflow, and enables further examination of the energetic signatures of the ion population trapped within Ganymede’s magnetosphere. The model-predicted ionospheric outflow is consistent with the in situ ion energy spectrograms observed by the Galileo Plasma Experiment at closest approach, and requires that both ionospheric H and O are present in the population of ions exiting Ganymede’s ionosphere over the polar cap. The outward flux of ionospheric ions was calculated to be ~10 ions/cm/s, which is in agreement with independently calculated sputtering rates of Ganymede’s icy surface. The modeled spectrograms define characteristic energy signatures and populations for various regions of Ganymede’s magnetosphere, which illustrate the major sources of ions trapped within the magnetosphere are Ganymede’s ionospheric O and H. The fact that very little plasma was observed inside Ganymede’s magnetosphere during the G8 flyby is attributed to the region being shadowed from the sun for ~60 h, which may indicate the importance of photoionization for sustaining Ganymede’s ionospheric plasma source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of ion cyclotron motion at Ganymede: Magnetic field morphology and magnetospheric dynamics

[1] Ion cyclotron motion can play a role in shaping magnetospheres and governing magnetospheric dynamics, particularly in weakly magnetized systems such as the moons of outer planets. However, MHD explicitly neglects such effects. We demonstrate the importance of ion cyclotron motion in the near space environment of Ganymede using 3-dimensional multi-fluid simulations to account for Galileo mag...

متن کامل

Multi-fluid simulations of Ganymede’s magnetosphere

[1] Comparative studies of 3D multi-fluid simulations with Galileo magnetometer data are used to develop a quantitative model of the currents and fields within Ganymede’s magnetosphere as well as its bulk plasma environment. The model includes contributions from Jupiter’s magnetosphere and the flux of different ion species originating from Ganymede’s ionosphere. Comparisons between the magnetom...

متن کامل

Three-dimensional multifluid simulation of the plasma interaction at Titan

[1] Using a three-dimensional multifluid simulation, we demonstrate the importance of ion gyroradius and heavy ion effects when characterizing Titan’s plasma interaction with the Kronian magnetosphere. Ion gyroradius and heavy ion effects drastically change the mass loading and magnetic field draping at Titan. We find that the large ion gyroradius of picked up ionospheric species results in an ...

متن کامل

Three-dimensional MHD simulations of Ganymede’s magnetosphere

[1] Ganymede is unique among planetary moons because it has its own magnetic field strong enough to form a magnetosphere within Jupiter’s magnetospheric environment. Here we report on our three-dimensional global magnetohydrodynamic (MHD) simulations that model the interaction between Ganymede’s magnetosphere and the corotating Jovian plasma. We use the measured field and particle properties to...

متن کامل

Resistive MHD simulations of Ganymede’s magnetosphere 1. Time variabilities of the magnetic field topology

[1] The time-variable structure of Ganymede’s magnetosphere is studied by means of resistive MHD simulations. Using the magnetometer measurements of the Galileo spacecraft in the first few Ganymede flybys as examples, we find that the plasma flow pattern inside the Ganymedian magnetosphere could be subject to significant changes. Furthermore, the boundary of the polar cap dividing the open magn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008